?
新农村
供 应求 购商 城团 购招 商公 司行 情人 才问 答养 牛养 羊养 猪养 禽水 产视 频图 库品 牌下 载
?
?
当前位置: 首页 ? 资讯 ? 社会资讯 ? 正文

转基因技术——理性客观对待

放大字体??缩小字体 发布日期:2017-09-04??浏览次数:946
核心提示:解放军306医院,病理科基因检测室,资料转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生
 

转基因技术——理性客观对待

解放军306医院,病理科基因检测室,资料

转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。

“转基因”这个在全球承受无尽争议的词汇,成为2014年“科学美国人”中文版《环球科学》杂志年度十大科技热词之一。而争议的关键在于人类是否像自己所认为的那样,已经可以代替上帝改造自然。毕竟人类曾经认为地球是宇宙的中心。

2015年1月13日,欧洲议会全体会议通过一项法令,允许欧盟成员国根据各自情况选择批准、禁止或限制在本国种植转基因作物。该法令还将提交欧洲理事会,如一切顺利将于今春生效。

转基因技术——理性客观对待

1974年,科恩(Cohen)将金黄色葡萄球菌质粒上的抗青霉素基因转到大肠杆菌体内,揭开了转基因技术应用的序幕 。

1978年,诺贝尔医学奖颁给发现DNA限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。

1982年,美国Lilly公司首先实现利用大肠杆菌生产重组胰岛素,标志着世界第一个基因工程药物的诞生。

1992年荷兰培育出植入了人促红细胞生成素基因的转基因牛,人促红细胞生成素能刺激红细胞生成,是治疗贫血的良药。转基因技术标志着不同种类生物的基因都能通过基因工程技术进行重组,人类可以根据自己的意愿定向地改造生物的遗传特性,创造新的生命类型。[5] 同时转基因技术在药物生产中有着重要的利用价值。转基因技术,包括外源基因的克隆、表达载体、受体细胞,以及转基因途径等,外源基因的人工合成技术、基因调控网络的人工设计发展,导致了21世纪的转基因技术将走向转基因系统生物技术 2000年国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程与转基因技术。

技术目的

(1)提取目的基因 从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段,或者人工合成目的基因,或从基因文库中提取相应的基因片段和PCR技术进行目的基因的增殖。

(2) 将目的基因与运载体结合 在细胞外, 将带有目的基因的DNA片段通过剪切、粘合连接到能够自我复制并具有多个选择性标记的运输载体分子(通常有质粒、T4噬菌体、动植物病毒等)上, 形成重组DNA分子。

(3) 将目的基因导入受体细胞 将重组DNA分子注入到受体细胞(亦称宿主细胞或寄主细胞) ,将带有重组体的细胞扩增,获得大量的细胞繁殖体。

(4) 目的基因的筛选 从大量的细胞繁殖群体中,通过相应的试剂筛选出具有重组DNA分子的重组细胞。

(5) 目的基因的表达 将得到的重组细胞,进行大量的增殖,得到相应表达的功能蛋白,表现出预想的特性,达到人们的要求。

主要分类

转基因过程按照途径可分为人工转基因和自然转基因,按照对象可分为植物转基因技术、动物转基因技术和微生物基因重组技术。

人工转基因

将人工分离和修饰过的基因导入到生物体基因组中,

植物基因工程

由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术(Transgene technology)。人们常说的“遗传工程”、“基因工程”、“遗传转化”均为转基因的同义词。如今,改变动植物性状的人工技术往往被称为转基因技术(狭义),而对微生物的操作则一般被称为遗传工程技术(狭义)。

经转基因技术修饰的生物体在媒体上常被称为“遗传修饰过的生物体”(Genetically modified organism,简称GMO)。

自然转基因

不是人为导向的,自然界里动物、植物或微生物自主形成的转基因现象,例如慢病毒载体 里的乙型肝炎病毒DNA整合[7] 到人精子细胞染色体上、噬菌体将自己DNA的插入到溶源细胞DNA上,农杆菌 和 花椰菜花叶病毒(CMV)等。

植物转基因

植物转基因是基因组中含有外源基因的植物。它可通过原生质体融合、细胞重组、遗传物质转移、染色体工程技术获得,有可能改变植物的某些遗传特性,培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等的作物新品种,如玉米稻 、北极鳄梨、[8] 转基因三倍体毛白杨。而且可用转基因植物或离体培养的细胞,来生产外源基因的表达产物,如人的生长激素、胰岛素、干扰素、白介素2、表皮生长因子、乙型肝炎疫苗等基因已在转基因植物中得到表达。

动物转基因

动物转基因就是基因组中含有外源基因的动物。它是按照预先的设计,通过细胞融合、细胞重组、遗传物质转移、染色体工程和基因工程技术将外源基因导入精子、卵细胞或受精卵,再以生殖工程技术,有可能育成转基因动物。

通过生长素基因、多产基因、促卵素基因、高泌乳量基因、瘦肉型基因、角蛋白基因、抗寄生虫基因、抗病毒基因等基因转移,可能育成生长周期短,产仔、生蛋多和泌乳量高,转基因超级鼠比普通老鼠大约一倍。生产的肉类、皮毛品质与加工性能好,并具有抗病性,已在牛、羊、猪、鸡、鱼等家养动物中取得一定成果。

但由于转基因动物受遗传镶嵌性和杂合性的影响,其有性生殖后代变异较大,难以形成稳定遗传的转基因品系。因而,尝试将外源基因导入线粒体,再送入受精卵中,由于线粒体的细胞质遗传,其有性后代可能全都是转基因个体,从而解决这一问题。

微生物重组

在所有转基因技术中,以微生物基因重组技术应用最为宽泛和常见。

与动植物不同的是,微生物重组技术通常需要用到专门的重组基因载体——质粒。质粒是一种细胞质遗传因子,因此具有不稳定的遗传特性。但相比于动植物,微生物[9] 重组技术具有周期短、效果显著、控制性强的特点,因而广泛应用于生物医药和[10] 酶制剂行业。经过多年的理论奠基,现已在微生物领域中开发出酵母表达系统、大肠杆菌表达系统和丝状真菌表达系统,其中毕赤酵母表达系统和大肠杆菌表达系统最受欢迎,具有表达效率高(外源蛋白占细胞总蛋白的10%至40%)、生产成本低的特点,一般常见的诸如胰岛素、白细胞介素、α-高温淀粉酶、重组人p53腺病毒注射液、啤酒酵母乙肝疫苗、抗生素 、饲料用木聚糖酶、壳聚糖酶等都由这两种表达系统生产的。

技术原理

转基因技术的原理是将人工分离和修饰过的优质基因,导入到生物体基因组中,从而达到改造生物的目的。由于导入基因的表达,引起生物体的性状,可遗传的修饰改变,这一技术称之为人工转基因技术(Transgene technology)。

人工转基因技术就是把一个生物体的基因转移到另一个生物体DNA中的生物技术。具有不确定性。常用的方法和工具包括显微注射、基因枪、电破法、脂质体等。转基因最初用于研究基因的功能,即把外源基因导入受体生物体基因组内(一般为模式生物,如拟南芥或斑马鱼等),观察生物体表现出的性状,达到揭示基因功能的目的。

植物

转基因植物是基因组中含有外源基因的植物。通过原生质体融合、细胞重组、遗传物质转移、染色体工程技术获得,改变植物的某些遗传特性,培育优质新品种,或生产外源基因的表达产物,如胰岛素等。

在过去的二十年里,随着分子生物学各领域的不断发展,植物基因的分离、基因工程载体的构建、细胞的基因转化、转化细胞的组织培养、植株再生及外源基因表达的检测等各项技术日趋成熟和完善,有关植物基因工程的研究日新月异,许多以前根本不可能的基因转化工作在越来越多的植物上获得成功。

研究转基因植物的主要目的是提高多肽或工业用酶的产量,改善食品质量,提高农作物对虫害及病原体的抵抗力。常规的药用蛋白大部分是利用生化的方法提取或微生物发酵获得的,这类活性物质一般在活细胞中含量甚微,且提取过程复杂,成本高,远远满足不了社会的需要。应用转基因植物来生产这些药用蛋白,包括疫苗、抗体、干扰素等细胞因子,可以利用植物大田栽种的方式大量生产,大幅度降低生产成本,提高产量,还可以获得常规手段无法获得的药物。

转基因技术——理性客观对待

利用植物来生产疫苗的最大优点是他可以作为食品直接口服。通过各种植物转基因技术将多台疫苗基因转入植物,从而得到表达多肽疫苗的转基因植物。随着抗体基因工程能将抗体基因(从小的活性单位到完整抗体的重、轻链基因)从单抗杂交瘤中分离出来,人们就开始想办法利用转基因植物来表达这些抗体。

1989年Hiatt将鼠杂交瘤细胞产生的抗体基因转入烟草细胞获得了植物抗体,并且发现植物抗体具有杂交瘤来源抗体同样的抗原结合能力,既有功能性。在这之后,全长抗体、单域抗体和单链抗体在转基因植物中均获得成功表达。用植物抗体进行局部免疫治疗将是一个引人瞩目的领域,应用高亲和性抗体进行局部治疗可以治愈龋齿及其它一些常见病。植物转基因可获得更多的新品种,蔬菜,水果,花卉都能够在保留其优良品质的情况下优化。

动物

它是按照预先的设计,融合重组细胞、遗传物质转移、染色体工程和基因工程技术将外源基因导入精子、卵细胞或受精卵,再以生殖工程技术,有可能育成转基因动物。通过生长素基因、多产基因、促卵素基因、高泌乳量基因、瘦肉精基因、角蛋白基因、抗寄生虫基因、抗病毒基因等基因转移,可能育成优良的可养殖品种。

基因动物是指用实验导入的方法将外源基因在染色体基因内稳定整合并能稳定表达的一类动物。1974年,Jaenisch应用显微注射法,在世界上首次成功地获得了SV40DNA转基因小鼠。其后,Costantini将兔-珠蛋白基因注入小鼠的受精卵,使受精卵发育成小鼠,表达出了兔β-珠蛋白;Palmiter等把大鼠的生长激素基因导人小鼠受精卵内,获得“超级”小鼠;Church获得了首例转基因牛。到目前为止,人们已经成功地获得了转基因鼠、鸡、山羊、猪、绵羊、牛、蛙以及多种转基因鱼。

还可将转基因动物作为生物工厂(Biofactories),包括,乳腺生物反应器和输卵管生物反应器等,如以转基因小鼠生产凝血因子IX、组织型血纤维溶酶原激活因子(t-PA)、白细胞介素2、α1-抗胰蛋白酶,以转基因绵羊生产人的α1-抗胰蛋白酶,以转基因山羊、奶牛生产LAt-PA,以转基因猪生产人血红蛋白等,这些基因产品具有高效、优质、廉价与相应的人体蛋白具有同样的生物活性,且多随乳汁分泌,便于分离纯化,基于系统生物学的发展,转基因系统生物技术-合成生物学成为不仅单基因而且多基因乃至基因组设计、合成与转基因的新一代生物技术。

但由于人工转基因动物,它们受遗传镶嵌性和杂合性的影响,其有性生殖后代变异较大,难以形成稳定遗传的转基因品系。因而,尝试从受体动物细胞中分离出线粒体,以外源基因对其进行离体转化,再将人工转基因线粒体导入受精卵,所发育成的人工转基因动物,雌性个体外培养的卵细胞与任一雄性个体交配或体外人工受精,由于线粒体的细胞质遗传,其有性后代可能全都是人工转基因个体。

转化方法

遗传转化的方法按其是否需要通过组织培养、再生植株通常可分成两大类,第一类需要通过组织培养再生植株,常用的方法有农杆菌介导转化法、基因枪法;另一类方法不需要通过组织培养,比较成熟的主要有花粉管通道法,花粉管通道法是中国科学家提出的。

农杆菌介导转化

农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。

因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。

农杆菌介导法起初只被用于双子叶植物中,自从技术瓶颈被打破之后,农杆菌介导转化在单子叶植物中也得到了广泛应用,其中水稻已经被当作模式植物进行研究。

花粉管通道法

在授粉后向子房注射含目的基因的DNA溶液,利用植物在开花、受精过程中形成的花粉管通道,将外源DNA导入受精卵细胞,并进一步地被整合到受体细胞的基因组中,随着受精卵的发育而成为带转基因的新个体。该方法于80年代初期由中国学者周光宇提出,中国目前推广面积最大的转基因抗虫棉就是用花粉管通道法培育出来的。该法的最大优点是不依赖组织培养人工再生植株,技术简单,不需要装备精良的实验室,常规育种工作者易于掌握。

核显微注射法

核显微注射法是动物转基因技术中最常用的方法。它是在显微镜下将外源基因注射到受精卵细胞的原核内,注射的外源基因与胚胎基因组融合,然后进行体外培养,最后移植到受体母畜子宫内发育,这样分娩的动物体内的每一个细胞都含有新的DNA片段。-这种方法的缺点是效率低、位置效应(外源基因插入位点随机性)造成的表达结果的不确定性、动物利用率低等,在反刍动物还存在着繁殖周期长,有较强的时间限制、需要大量的供体和受体动物等特点。

详细步骤:在显微镜下,用一根极细的玻璃针(直径1-2微米)直接将DNA注射到胚胎的细胞核内,再把注射过DNA的胚胎移植到动物体内,使之发育成正常的幼仔。用这种方法生产的动物约有十分之一是整合外源基因的转基因动物。

基因枪法

利用火药爆炸或高压气体加速(这一加速设备被称为基因枪),将包裹了带目的基因的DNA溶液的高速微弹直接送入完整的植物组织和细胞中,然后通过细胞和组织培养技术,再生出植株,选出其中转基因阳性植株即为转基因植株。与农杆菌转化相比,基因枪法转化的一个主要优点是不受受体植物范围的限制。而且其载体质粒的构建也相对简单,因此也是转基因研究中应用较为广泛的一种方法。

精子介导法

精子介导的基因转移是把精子作适当处理后,使其具有携带外源基因的能力。然后,用携带有外源基因的精子给发情母畜授精。在母畜所生的后代中,就有一定比例的动物是整合外源基因的转基因动物。

同显微注射方法相比,精子介导的基因转移有两个优点:首先是它的成本很低,只有显微注射法成本的1/10。其次,由于它不涉及对动物进行处理,因此,可以用生产牛群或羊群进行实验,以保证每次实验都能够获得成功。

核移植转基因法

体细胞核移植是一种转基因技术。该方法是先把外源基因与供体细胞在培养基中培养,使外源基因整合到供体细胞上,然后将供体细胞细胞核移植到受体细胞——去核卵母细胞,构成重建胚,再把其移植到假孕母体,待其妊娠、分娩,便可得到转基因的克隆动物。

体细胞核移植法

先在体外培养的体细胞中进行基因导入,筛选获得带转基因的细胞。然后,将带转基因体细胞核移植到去掉细胞核的卵细胞中,生产重构胚胎。重构胚胎经移植到母体中,产生的仔畜百分之百是转基因动物。

鉴别方法

人工转基因技术和人工杂交技术是两个概念,植物杂交技术是自体基因重组过程,不改变繁殖特性,但有组合优质基因的几率,基本不会产生变异基因,即没有剥夺其基本特性的作物。它可通过原生质体之间的融合、细胞自体细胞重组、自体遗传物质自由组合转移、自体染色体工程技术获得,不改变植物的遗传特性,可以提高优质率水平,从而培育出高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、等的作物新品种。

转基因技术——理性客观对待

人工杂交技术可分为植物杂交和杂交畜牧,植物杂交是指近缘种间的有性繁殖,嫁接不属于此列。利用体细胞杂交技术可以做到远缘的杂交(比如紫菜甘蓝、番茄马铃薯)。

杂交畜牧是指两个不同近交系之间,优质品种的雌雄畜牧进行有计划的交配,杂交所产生的第一代动物,具有两亲本遗传的优质特性,用于改良家畜品质,有着正常的生长周期和正常繁殖能力的畜牧品种。

自从人类耕种作物以来,我们的祖先就从未停止过作物的遗传改良。过去的几千年里农作物改良的方式主要是对自然突变产生的优良基因和重组体的选择和利用,通过随机和自然的方式来积累优良基因。遗传学创立后近百年的动植物育种则是采用人工杂交的方法,进行优良基因的重组和外源基因的导入而实现遗传改良。

因此,人工转基因技术与传统技术有着同样的目的,其本质都是通过获得优良基因进行遗传改良。但在基因转移的范围和效率上,人工转基因技术与传统育种技术有两点重要区别。

第一,传统技术一般只能在生物种内个体间实现基因转移,而人工转基因技术所转移的基因则不受生物体间亲缘关系的限制。

第二,传统的杂交和选择技术一般是在生物个体水平上进行,操作对象是整个基因组,所转移的是大量的基因,不可能准确地对某个基因进行操作和选择,对后代的表现预见性较差。而人工转基因技术所操作和转移的一般是经过明确定义的基因,功能清楚,后代表现可准确预期。

因此,人工转基因技术是对传统技术的发展和补充。将两者紧密结合,可相得益彰,大大地提高动植物品种改良的效率。

转基因技术——理性客观对待

应用领域

目前,转基因技术已广泛应用于医药、工业、农业、环保、能源、新材料等领域 。

药物领域

目前已有基因工程疫苗、基因工程胰岛素和基因工程干扰素等药物。 其使用基因拼接技术或DNA重组技术(即转基因技术),指按照人们的意愿,定向地改造生物的遗传性状,产生出人类需要的基因产物,以此生产出的药物原料和药品。

基因工程疫苗

使用DNA重组生物技术,把天然的或人工合成的遗传物质定向插入细菌、酵母菌或哺乳动物细胞中,使之充分表达,经纯化后而制得的疫苗。应用基因工程技术能制出不含感染性物质的亚单位疫苗、稳定的减毒疫苗及能预防多种疾病的多价疫苗。

已经商业化使用的部分基因工程疫苗:

乙肝疫苗 、丙肝疫苗、百日咳基因工程疫苗、狂犬病基因工程灭活疫苗 、肠道病毒71型基因工程疫苗、产肠毒素大肠杆菌基因工程疫苗、轮状病基因工程疫苗、Asia Ⅰ型口蹄疫病毒(FMDV)的感染表位重组蛋白疫苗 、弓形虫基因工程疫苗、肠出血性大肠杆菌基因工程疫苗等。

基因工程胰岛素

在2013年举办的第七届联合国糖尿病日主题活动上,与会专家指出“中国目前糖尿病患者数达1.14亿,全球的1/3”。糖尿病的病因是胰岛素分泌缺陷或其生物作用受损,所以最常用的治疗方法就是以注射胰岛素的方式补充人体内胰岛素。要获得胰岛素,最初只能从牛和猪的胰脏中提取。但是,每100千克动物胰腺只能提取出4-5克胰岛素,产量低,远不能满足患者的需求。

1980年代初,美国一家公司通过转基因技术实现了人体胰岛素的工业生产。其原理是,将人的基因中负责表达胰岛素的那一段“剪切”下来,转入大肠杆菌或者酵母菌里,通过后者的快速增殖达到人体胰岛素的大量生产。全球大多数糖尿病人才得到了很好的胰岛素治疗。

基因工程乙肝疫苗产业化案例:

国家卫计委2013年7月26日公布,全球3.5亿乙肝病毒携带者中有近1亿中国人,全球每年大约70万病毒性肝炎相关死亡人群中我国占近半。我国乙肝报告病例多年来居所有法定传染病的首位,约占总传染病总数的1/3。

20世纪80年代,转基因乙肝疫苗被研制成功。其原理是,将乙肝病毒基因中负责表达表面抗原的那一段“剪切”下来,转入酵母菌里。被转入乙肝病毒基因的酵母菌生长时,就会生产出乙肝表面抗原。而酵母菌是一种能快速生长繁殖的生物,于是乙肝表面抗原就被大量生产出来。这种疫苗技术1994年被引进中国,随后建成了两条生产线。1997年9月1日卫生部以卫药发(1997)第57号文下达了《关于基因乙肝疫苗取代血源性乙肝疫苗有关问题的通知》,规定:1998年1月起停止阳性血浆的采集;已采集的阳性血浆1998年上半年允许投料生产;合格血源乙肝疫苗使用期限截止于2000年底。2001年以后全部使用高安全性的基因工程乙肝疫苗。

同年,利用酵母菌的转基因乙肝疫苗被正式批准生产。从此,乙肝疫苗终于得以大量生产,中国政府也开始着手给儿童免费接种、甚至免费补种乙肝疫苗。2009至2011年,我国开展了15岁以下人群免费补种乙肝疫苗工作,共补种6800万余人。全面、免费疫苗接种的开展,使我国5岁以下儿童慢性乙肝感染率降至1%以下;我国每年乙肝新发感染者人数也降到了10万。根据卫计委的数据,1992年至2009年,全国预防了8000万人免受乙肝病毒感染,减少了近2000万乙肝病毒表面抗原携带者,减少肝硬化、肝癌等引起的死亡430万人。

转基因技术——理性客观对待

食品领域

利用分子生物学技术,将某些生物的基因转移到农作物中去,改造生物的遗传物质,使其在性状、营养品质、消费品质方面向人类所需要的目标转变,从而得到转基因农作物。以转基因生物为直接食品,作为原料加工生产的食品,以及喂养家畜得到的衍生食品,在广义上都可以称为转基因食品。因其安全性被广泛质疑,国际社会对其尚存有很大争议。

它的研究已有几十年的历史,但真正的商业化是近十年的事。90年代初,市场上第一个转基因食品出现在美国,是一种保鲜番茄,这项研究成果本是在英国研究成功的,但英国人没敢将其商业化,美国人便成了第一个吃螃蟹的人,让保守的英国人后悔不迭。此后,转基因食品一发不可收。据统计,美国食品和药物管理局确定的转基因品种已有43种。

如常见的农作物转入Bt(苏云金芽孢杆菌)基因和Ht基因。Bt基因编码的是苏云金芽胞杆菌分泌的一种对鳞翅目鞘翅目昆虫(比如小菜蛾)有毒的蛋白质,携带有Bt基因的农作物在生长时亦能自己产生这种毒性蛋白,因此不需要使用农药,靠农作物自身杀虫。这种毒蛋白只对虫子有效,尚未证据显示其对人类或其他哺乳动物有致毒致敏作用;Ht基因又叫抗除草剂基因,它指导的蛋白质能够在植物体内分解除草剂物质,使植物获得抵抗高浓度除草剂的能力。因此在田间喷洒除草剂之后,杂草会因为对除草剂的抵抗力不足而被杀死,而农作物得以正常存活。相对于非转基因农作物使用机械来除草,种植转Ht基因的农作物更加经济。

发展前景

自1996年首例转基因农作物产业化应用以来,全球转基因技术研究与产业应用快速发展。发达国家纷纷把发展转基因技术作为抢占未来科技制高点和增强农业国际竞争力的战略重点,发展中国家也积极跟进,并呈现以下发展态势:

一是品种培育速度加快。随着生命科学、基因组学、信息学等学科的发展,转基因技术研究日新月异,研究手段、装备水平不断提高,基因克隆技术突飞猛进,一些新基因、新性状和新产品不断涌现。品种培育呈代际特征,全球转基因生物新品种已从抗虫和抗除草剂等第一代产品,向改善营养品质和提高产量的第二代产品,以及工业、医药和生物反应器等第三代产品转变,多基因聚合的复合性状正成为转基因技术研究与应用的重点。

二是产业化应用规模迅速扩大。截至2009年底,全球已有25个国家批准了24种转基因作物的商业化应用。以转基因大豆、棉花、玉米、油菜为代表的转基因作物种植面积,由1996年的2550万亩发展到2009年的20亿亩,14年间增长了79倍。

美国仍然是最大的种植国,2009年种植面积9.6亿亩;其次是巴西,3.21亿亩;阿根廷,3.195亿亩;印度,1.26亿亩;加拿大,1.23亿亩;中国,5550万亩;巴拉圭,3300万亩;南非,3150万亩。值得一提的是,2000年以来,美国先后批准了6个抗除草剂和药用转基因水稻、伊朗批准了1个转基因抗虫水稻商业化种植;加拿大、墨西哥、澳大利亚、哥伦比亚4国批准了转基因水稻进口,允许食用。

三是生态和经济效益十分显著。1996至2007年,全球转基因作物的累计收益高达440亿美元,累计减少杀虫剂使用35.9万吨。2008年,全球转基因产品市场价值达到75亿美元。

生化超限战

2009年11月27日,农业部批准了“华恢1号”、“Bt汕优63”两种转基因水稻,一种BVLA430101转基因玉米的安全证书,两个产品分别限在湖北省和山东省生产应用。获得两个转基因水稻安全证书的是华中农业大学张启发教授及其同事。这是中国首次为转基因水稻颁发安全证书,也是全球首次为转基因主粮发放安全证书。但是,有关转基因水稻商业化种植的消息引来了各种担忧,也引起了部分网民的强烈反对。

中国于2000年8月8日签署了《国际生物多样性公约》下的《卡塔赫纳生物安全议定书》,国务院于2005年4月27日批准了该议定书,中国正式成为缔约方。议定书的目标是保证转基因生物及其产品的安全性,尽量减少其潜在的对生物多样性和人体健康可能造成的损害,在缺乏足够科学依据的情况下,可对他国试图入境的转基因生物及产品采取严格的限制与禁入措施。

该公约的第23条规定,对转基因生物要进行严格的风险评估、风险管理和增加决策的透明度和公众参与,应在决策过程中征求公众意见,向公众通报结果。

随着转基因问题日益成为热点,越来越多的人开始关注转基因,但是同时也出现了关于转基因的诸多争议。

许多文章和书籍(例如《生化超限战:转基因食品和疫苗的阴谋》)是反对转基因的代表作之一。甚至有反对派把支持转基因者说成了一种原教旨主义的歇斯底里。来自于支持和反对转基因技术的声音在科技原理、监控和意识形态范畴尚存在巨大纷争。

主要影响

生态系统

减少温室气体排量

农业生物技术应用国际服务组织(ISAAA)发布2012转基因作物年度发展报告

《Global Status of Commercialized Biotech/GM Crops: 2012》,指出2012年发展中国家转基因作物种植面积的增幅首次超过发达国家,并认为发展转基因作物可减少温室气体排量。

ISAAA在年度报告中分析了转基因作物对环境的影响。报告指出,2011年全球转基因作物的种植节约了相当于47300公斤的杀虫剂,高产的转基因作物节省了相当于1.09亿公顷的耕地,同时其效果相当于减少了约230亿公斤的温室气体排放量。通常,种植转基因作物不需要大面积野外田间耕作。减少耕作能使土壤中保留更多的残留物,从而在土壤中捕获更多的二氧化碳,降低温室气体排放量。此外,较少的田间作业也必然降低燃料消耗和随之产生的二氧化碳排放。[23]

转基因作物因为是人工制造的品种,我们可以把这些品种,看作为自然界原来不存在的外来种。一般说来,外来物种对环境或生物多样性,造成威胁或危险会有一段较长的时间。有时需10年的时间,或更长的时间。转基因作物商品化种植至今最长也就是5~6年的时间,一些潜在风险在这么短的时间内,不一定能表现出来。可是有些风险在实验室水平上已经证实。如Mikkelsen等证实抗除草剂转基因油菜的抗除草剂基因可以通过基因流在一次杂交、一次回交的过程已转到其野生近缘种中(Mikkelsen et al., 1996)。

对于农田生态系统(Agro-ecosystem),同样存在各种风险,例如:

导致杀虫剂用量增加(抗性的选择和转运到可相容的其它植物中)

产生新的农田杂草(基因流和杂交)

转基因植物自身变为杂草(插入性状的竞争)

产生新的病毒(不同病毒基因组和转基因作物的病毒外壳蛋白的重组)

产生新的作物害虫

对非目标生物的伤害(食草动物的误食)

社会质疑

2000年3月,克隆小猪“横空出世”。随之而来,欧美之间也为转基因食品吃与不吃的问题争论不休。转基因食品有转基因植物,如:西红柿、土豆、玉米等,还有转基因动物,如:鱼、牛、羊等。虽然转基因食品与普通食品在口感上没有多大差别,但转基因的植物、动物有明显的优势:优质高产、抗虫、抗病毒、抗除草剂、改良品质、抗逆境生存等。转基因产品对现实生活的影响仍然还有诸多疑问:到目前为止,官方没有公开转基因产品成份的详细成分列表和长期的安全跟踪研究数据。从生态学的角度来说,转基因后的作物本身已经是虫害等自然生物的天敌,存在破坏生态系统平衡的可能。

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

转基因技术——理性客观对待

?
?
[ 资讯搜索 ]? [ 加入收藏 ]? [ 告诉好友 ]? [ 打印本文 ]? [ 违规举报 ]? [ 关闭窗口 ]

?
0条 [查看全部]  相关评论

?
推荐图文
推荐资讯
点击排行
    网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 网站地图 | 网站留言 | 广告服务 | 积分换礼 | RSS订阅 | 200800696
    中国养殖信息网
    ?